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An atomistic model of kinetic crack 
growth in brittle solids 

B. R. LAWN*  
Division of Materials Science, School of AppEed Sciences, University of Sussex, 
Falmer, Sussex, UK 

A general theory of kinetic crack growth in ideally brittle solids is developed from first 
principles. In setting up a basic model, emphasis is placed on the essential need to provide 
for the existence of an energy barrier to activated, non-linear crack motions at the atomic 
level. The picture is presented of an ideally brittle fracture crack in which sequential bond 
rupture occurs via the lateral motion of atomic kinks along the crack front. Approximate 
solutions to the equations of kink motion are then obtained from the discrete, "lattice 
trapping" theory of Thomson and co-workers. Assuming a classical distribution of kink 
sites, an expression for the steady-state crack velocity follows. A feature of the present 
theory is the formulation in terms of the fundamental energy-balance concept of Griffith, 
with two major advantages: in the first place, standard fracture-mechanics parameters, 
such as the mechanical-energy-release rate and the fracture-surface energy, enter into the 
description in a natural manner; in the second, the effect of extrinsic agents on activated 
kink motion is readily accountable, through a simple modification of the total energy 
function for the crack system. To illustrate the model, the case of a slowly growing brittle 
crack in the presence of an interacting ideal gas environment is treated in some detail. 

1. In t roduct ion 
A large number of solids, of varying degrees of 
brittleness, are now known to exhibit the 
phenomenon of "kinetic", or "slow", crack 
growth. By slow, it is meant that the crack 
velocity is small (typically < 1 m sec -1) com- 
pared with dynamic values (typically ~ 103 
m sec-1). Generally, it is found that the rate of 
slow growth tends to be highly sensitive to such 
variables as temperature, applied load, con- 
centration of chemical environment, etc., sug- 
gesting a thermally activated process. The 
practical manifestations of this type of time- 
dependent process in engineering materials [1] 
have a vital bearing in "fail-safe" design of 
structural components; the very real possibility 
of a critical crack developing from a seemingly 
harmless flaw over an extended period of time 
has often been demonstrated in all too spec- 
tacular fashion. Yet despite a wealth of accu- 
mulated empirical data the fundamental nature 
of the mechanisms of rupture at the crack tip 
remains relatively unexplored, and it is only 
recently that a trend toward systematic studies of 

"model" fracture systems has emerged; the work 
of Wiederhorn and colleagues on the fracture 
behaviour of silica glasses and other ceramics in 
the presence of water environments [2] is 
worthy of mention as a step in this direction. 

Perhaps the greatest obstacle to the under- 
standing of kinetic fracture processes has been 
the lack of a satisfactory theoretical basis for 
describing crack-tip events at the atomic or 
molecular level. For  the growth of any crack 
inevitably involves the rupture of cohesive bonds, 
and this necessarily implies a departure from 
linearity in the force-separation response of the 
solid. That is, crack growth is fundamentally a 
non-linear problem, for which a general analy- 
tical treatment is out of the question. Several 
simplistic crack-tip models have evolved over 
the years in an attempt to circumvent this 
difficulty, but it is only within the last half- 
decade that the calculations have reached the 
degree of refinement needed to predict the one 
feature essential to thermally activated crack 
growth, namely a periodically varying energy 
barrier. Notable among the more advanced 
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models are those based on simple, discrete 
"lattice" representations of the solid, developed 
quasianalytically by Thomson and co-workers, 
and those based on "realistic" atomic structures, 
handled by computer simulation (for reviews, see 
[3, 4]). Bascially, one arrives at the following 
picture of an ideally brittle fracture: 

(i) The crack is in thermodynamic, or 
"Griffith", equilibrium when, for a virtual 
increment in area, the work done by applied 
forces transmitted to the tip just balances the 
increase in reversible surface energy [5]. The 
"surface energy" may correspond to the intrinsic 
value for the solid, or to a reduced, interracial 
value for the solid in contact with a chemical 
environment [6]. 

(ii) The crack advances or retreats from its 
equilibrium configuration by the sequential 
rupture of cohesive bonds across a well-defined 
plane. Associated with each atomic-scale jump 
is an energy barrier, i.e. the crack is "lattice- 
trapped", which effectively increases the 
"forward cleavage" surface energy [7, 8]. 

(iii) The crack profile is most realistically 
represented by a narrowing slit terminated by a 
line of bonds close to the rupture point [9 ]. The 
crack front itself contains "kinks", which 
provide "active" sites for preferential bond 
rupture; the kinks accordingly undergo lateral 
displacements along the crack front, and thereby 
facilitate crack growth [8]. 

(iv) The atomic motions of the kinks are 
enhanced by thermal fluctuations [8]. 
In this view, the key step in kinetic fracture 
reduces to a one-dimensional problem in 
statistical mechanics. 

The prime aim of the present treatment is to 
establish a general theoretical framework for 
describing slow crack growth in brittle solids, 
using the atomistic picture outlined above as an 
underlying basis. The important case of chemi- 
cally-enhanced growth will be taken as a useful 
illustrative application of the model. One interes- 
ting conclusion that derives from the analysis of 
this particular case is that slow fracture may 
actually be stimulated by environments normally 
considered to be non-corrosive. Another impor- 
tant adjunct is the existence of subsidiary kinetic 
steps in the overall chemo-rupture process; 
under certain conditions one of these subsidiary 
steps may become rate-controlling. The basic 
predictions of the theoretical model will be 
shown to be in accord with the qualitative 
features of published crack-velocity data. 
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2. Kink model of crack front 
2.1. Background considerations 
In devising a crack-tip model for an ideally 
brittle solid, certain requirements need to be 
met: first, the proposed structure should be 
capable of sustaining the crack without plastic 
flow; second, the model should reconcile with 
the soundly-based energy-balance concept of 
Griffith [5]; and finally, the model should make 
provision for incorporating thermally assisted 
extrinsic effects (e.g. the chemical effects already 
mentioned). 

We may deal with the first point briefly. 
Recent attempts at a first-principles approach to 
this problem address two different aspects of the 
following question: given an atomically sharp 
crack, under what structural conditions might a 
shear instability be expected to occur in the stress 
field of the tip ? One approach involves calcula- 
ting whether the theoretical strength of the solid 
in shear (favouring off-plane slip deformation) 
is likely to be exceeded before the theoretical 
strength in tension (favouring in-plane crack 
extension) [10]. The other approach involves 
calculating the energy barrier to dislocation 
emission from the crack tip once shear failure 
does occur [11]. Both types of calculation 
indicate that cracks may grow entirely free of 
plastic blunting in certain solids, particulary 
those with strong covalent and ionic bonding. 
This indication is indeed confirmed by computer 
exercises in the diamond-structure crystals [9]. 
Definitive experimental evidence on the question 
is lacking, but a careful electron microscopic 
study of thinned fracture specimens of sapphire 
revealed no evidence for plastic flow around 
residual fissures [12]. The notion of the atomi- 
cally sharp cleavage crack accordingly assumes a 
central standing in any fundamental discussion 
of brittle fracture mechanisms [3 ]. 

Turning to the second point, it is essential that 
the cornerstone of Griffith's theory, the surface 
energy term, be implicit in the crack-tip model. 
The usual way of setting up the model is to 
subdivide the crack system into two hypothetical 
zones: the non-linear, separation processes are 
considered to operate exclusively within a 
relatively small, inner zone immediately surroun- 
ding the crack tip; the linear elastic material in 
the surrounding, outer zone then serves the func- 
tion of a medium for transmitting the applied 
forces to the inner regions. For instance, Orowan 
[13] effectively assumed the non-linear zone to 
contain a single bond, and considered the 
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rupture of this bond in terms of the stress 
concentration at the tip of an elastic notch of 
atomic radius; by matching adjustable para- 
meters of an empirical force-separation charac- 
teristic to the intrinsic surface energy, he was 
able to derive a criterion for fracture identical in 
form to that of Griffith, Barenblatt [14], on the 
other hand, argued that the non-linear crack-tip 
zone must extend over several atomic spacings 
along the crack interface in order that the crack 
be induced to close smoothly into a cusp (thus 
avoiding singularities in the stress field solutions 
for the surrounding linear medium); the work of 
separating material at the crack tip is expressed 
in terms of a "modulus of cohesion", an integral 
over the crack plane of  a smoothed-out dis- 
tribution of cohesive "closure stresses", with the 
status of an intrinsic surface energy once more 
implied. This essential equivalence between the 
macroscopic and crack-tip theories has in fact 
been confirmed in a rigorous manner by Rice 
[15], using an elegant path-independent line- 
integral formulation to compare the energetics 
of crack extension at the different levels. 

However, it is important here to be aware of 
subtle differences in the dependence of the total 
surface energy function on crack area in the 
Griffith energy balance. The two models above 
actually represent limiting cases of crack-tip 
behaviour: the Orowan model views growth as 
an accumulation of discrete, independent bond- 
popping events, with attendant stepwise jumps in 
the total surface energy function (each jump 
corresponding to the energy of one bond); the 
Barenblatt model views growth as more or less 
continuous from one bond to the next, with 
strict proportionality between total surface 
energy and crack area. Thus, differences in the 
modelling reflect in thefine structure of the total 
surface energy term. This is only to be expected, 
for the particular conditions prescribed for the 
non-linear zone boundary must surely exert a 
strong influence on the atomic motions of the 
crack. What is at issue here is not the common 
energy-balance link with the Griffith theory, but 
rather the means by which the balance itself is 
effected. It is in this context that the "lattice 
models", based on quasi-one- and two-dimen- 
sional representations of a cracked crystalline 
array, offer new insight into kinetic processes. 
With their inbuilt provision for treating crack 
growth as a sequence of discrete yet mutually 
interacting bond-rupture events, these models 
indicate that the appropriate total surface energy 

function should exhibit an atomically periodic, 
smoothly varying fine structure [7, 8]. In this 
way the energy barrier requirement is met, and at 
the same time the fundamental Griffith concept 
remains intact. 

This preservation of the Griffith theme bears 
strongly on our final point; the energy-balance 
concept, rooted in the first law of thermo- 
dynamics, provides the flexibility for dealing 
with extrinsic fracture processes via the simple 
incorporation of new energy terms. At the crack- 
tip, or mechanistic, level the operation of any 
thermally assisted bond-rupture process implies 
the existence of atomically localized "active" 
sites along the crack front. For the thermal energy 
needed to activate crack growth must clearly 
increase with the size of the basic kinetic unit, 
thereby ruling out the possibility of a rigid 
forward motion of the entire front of a macro- 
scopic crack. The energetically favoured con- 
figuration is that of the kink, where traversal 
over the energy barrier manifests itself as a 
mobility of the active site along the front in much 
the same fashion as in the analogous cases of the 
dislocation line and the crystal growth step. 

2.2. Energetics of kink configuration 
We are now in a position to establish a semi- 
quantitative model of a kinked crack front. We 
begin with a formal statement of the Griffith 
concept. The total energy of a quasistatic crack 
system may be written as the sum of all terms 
which are affected by crack formation, 

u = ( -  w ~  + us )  + Us ,  (I) 

where WL is the work of applied forces, UE is the 
elastic strain energy in the system, and Us is the 
total surface energy. It can readily be demon- 
strated that the mechanical energy, consisting of 
the bracketed terms in Equation l, must 
decrease as the crack extends, while the surface 
energy must increase, thereby maintaining the 
energy balance. This leads us to the "fracture 
mechanics" formulation, with C the crack area, 

d U d ( -  WL + Us) 

dC dC 
dUs 

+ dC - G + 2T', (2) 

where G is the mechanical-energy-release rate 
(or crack-extension force) and T' is the fracture- 
surface energy. For  Griffith equilibrium we have 
a stationary value in the total energy, that is 
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c = 2 r .  (3) 

If dU/dC be made negative (G > 2_P) the crack 
extends, if made positive (G < 2/") the crack 
retracts. The advantages of this particular 
formulation are two-fold: first, standard elastic 
continuum solutions for the G term have been 
tabulated for a wide variety of crack geometries; 
second,/" can generally be regarded as a material 
constant (in the event that the work of creating 
the new crack surfaces contains no dissipative 
component , / "  reduces to the reversible surface 
energy ),). 

Next we consider the lattice crack models 
[7, 8]. The approach here is to represent a crystal 
structure by an array of static point masses 
linked by stretchable and bendable springs. In 
the interest of mathematical tractability the 
proposed arrays are necessarily oversimplistic, 
and the interatomic force function has to be 
taken as linear up to some critical rupture point. 
The models nevertheless allow automatically for 
interactions between the non-linear zone (now 
localised about the crack-tip bonds) and the 
surrounding lattice structure, and this is the vital 
ingredient which leads to the prediction of a 
smooth energy barrier to crack motion. Because 
of the discrete nature of the cracked system the 
equations of equilibrium reduce to fourth-order 
difference rather than differential equations, the 
exact solving of which may demand numerical 
techniques. However, the analysis may be 
conveniently simplified by an exploitation of the 
zone concept: 

(i) The mechanical energy of applied forces 
and elastic elements resides mainly in the outer, 
linear zone surrounding the inner tip region (i.e. 
over distances large compared with a tomic  
spacings), so that G m a y b e  evaluated as if the 
system were continuous. 

(ii) The total surface energy is determined 
explicitly by the non-linear separation processes 
which operate Within the non-linear zone, so 
that _P must be expected to oscillate with atomic 
periodicity. A simple, harmonic function pro- 
vides a useful first approximation. 

The system to which these ideas are to be 
applied is depicted in Fig. 1. The crack is of unit 
width, so that if the front were to advance 
uniformly along the x-axis the general infinitesi- 
mal increment in area, ~C, could be replaced by 
the increment in crack length, Sc. Indeed, this is 
the situation given specific attention by Thomson 
et al. in their work. Their approximate solution 
to the lattice equilibrium equations reduces to 
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Figure 1 Schematic of crack plane, showing atomic crack 
extension by nucleation and expansion of kink pair. 
Closed circles denote unruptured bonds, open circles 
ruptured bonds, shading "active" bonds at kink sites. 
Longitudinal crack-length co-ordinate c, and lateral kink 
co-ordinate d, define the atomic crack-tip displacements. 
Dimensions ax, au (out of page, not shown) and az are 
appropriate lattice spacings. 

\ a x / ' (4) 

where ax is the lattice spacing along the x-axis, 9' 
is the reversible surface energy and yt~ is a 
trapping term for straight-ahead growth. From 
this equation we obtain the periodic fracture 
surface energy. 

(x-mode). (5) 
However, if we invoke the mechanism of crack 
growth by kink motion, then the increment in 
crack area is replaced by a,3d, with d an appro- 
priate kink co-ordinate; the analogous fracture 
surface energy expression becomes 

(z-mode), (6) 

with the subscript z everywhere indicating the 
lateral mode of crack growth. In either of the 
two modes the crack is immobilized by the 
lattice within the "trapping range" 2/1- <~ G 
2/'+, where we define 

/ " + =  y •  (7) 

The yt parameters for the two modes must 
clearly depend on the detailed nature of the 
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crystal structure, and would appear to require 
the computer for quantitative evaluation [16, 17]. 
However, it is generally fair to assume that 
yt~ < )'t~ [17], which means that kink motion 
will always occur provided suitable sources 
exist. 

Let us assume for the moment that the 
required kink sources do exist. Recalling that G is 
insensitive to atomic-scale events within the 
crack-tip zone, and that y, yt are material 
constants, we may insert Equation_ 6 into Equa- 
tion 2 and integrate over d to get the energy 
associated with the motion of the kink, 

u = U(c, cO ~- V(c) + U*(d~) 

[ (~-~) (2rrdl] 
+ ( -  G + 2y)d - sin \ - ~ 7 / J  ax, 

( d >  & ) .  (8) 

The first two terms on the right-hand side of this 
equation relate to the boundary conditions for 
the particular kink configuration depicted in Fig. 
I : in this case, where a source operating at (c, O) 
creates a kink pair by rupturing a bond ahead of 
an otherwise straight crack front, d• refers to a 
critical kink co-ordinate for nucleation, and the 
asterisk denotes an activated state. 

It is of interest to examine the effect of 
variations in applied loading, as manifested in 
the value of G, on the energy function for kink 
motion in Equation 8. We do this in Fig. 2, with 
plots covering the full range of trapping. The 
relative energy barriers for kink pair expansion 
(U+*) and contraction (U_*) indicate clearly the 
bias of the applied loading. Fig. 2c represents 
Griffith equilibrium, where forward and back- 
ward motions of the kinks are equally favoured. 
Invoking the condition (SU/Od)~ = 0 for the 
extrema in Equation 8, we obtain the activation 
energies 

2rt" (G = 2y) (9) U+*(a) = d-*(a)  = ~ ,  

where N~_ = 1/a~az is the number of bonds 
intersecting unit area of crack plane, Figs. 2a and 
e represent trapping limits for forward and back- 
ward kink motions respectively; beyond these 
limits the crack proceeds spontaneously to a 
dynamic state. Figs. 2b and d represent inter- 
mediate trapping configurations. For small 
departures from Griffith equilibrium the activa- 
tion energies contain a linear term in G, 

Kink coordinate ( a l ~  

I u: (c) . . . .  1 

I G = 2 ~  / U ~ 

(e} !~ 

27tz 
/ 

Figure 2 Potential energy diagrams for kink motion 
according to lattice model. Activation harrier for dis- 
crete motion through an atomic spacing is indicated by 
heavy curved line. Corresponding continuum behaviour is 
indicated by full, straight line. Sequence (a) to (e) 
represents states within the "trapping" range 2_r'_ _< G -< 
2F+ for the crack, from which "escape" may occur via 
thermal fluctuations. Beyond the limiting states (a) and 
(e) the crack is free to advance or retreat dynamically. 

2y ,~[  ~r ( -  G + 2y)]  
U• = ~  1 •  2y,~ ' 

(I - G + 2 y ]  < 2 y t ~ ) .  (10)  

More generally, however, the activation energies 
are non-linear functions, as shown in Fig. 3. 

Thus far we have effectively been dealing with 
a classical system at the absolute zero of 
temperature. We must now extend the descrip- 
tion to include the effects of thermal energy on 
the crack response. 
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Figure 3 Activation energy for kink motion as function of 
mechanical-energy-release rate over trapping range. Full 
lines denote exact functions as determined from the 
extrema in Equation 8 (and as indicated in the previous 
figure), dashed lines denote the linear approximations of 
Equation 10. 

3. Kinet ics of kink model 
The quantity which reflects most directly the 
action of kinetic processes in a fracture experi- 
ment is the forward crack velocity. Suppose that 
a population of kink sources along the crack 
front operates so as to produce a cumulative 
extension through ~c. Then ~N = NA3C = NA~c 
bonds per unit width of crack will be ruptured, 
giving a crack velocity 

r e -  d t -  NA --~ ' (11) 

with dN/dt the bond-rupture rate per unit crack 
width. The bond-rupture rate will depend on the 
density of kinks. I f  this density be written as 
Nw*/Nw, with N w  the number of crack-tip 
bonds along the unit crack front and the asterisk 
again denoting an "active" state, we have 

dN 
dt Nw*v~1* (12) 

VM* being the frequency factor for rupture of a 
single active bond; the subscript M is used to 
imply that barrier traversal effectively imparts 
mobility to the kink. 

To determine the kink concentration in Equa- 
tion 12 it is necessary to look closely at the 
manner in which neighbouring kinks mutually 
interact to extend the crack [8]. We consider a 
steady-state situation in which kink pairs are 
nucleated thermally, and subsequently expand 
laterally to collide with and annihilate their 
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Figure 4 Model for kink interactions, showing schematic 
view of crack plane. Closed circles denote unruptured 
bonds, open circles ruptured bonds, shading kink sites. 
Arrows indicate kink motions corresponding to crack 
extension. 

neighbours (Fig. 4). The velocity of an individual 
kink is given as the product of the rupture rate of 
an active bond and the ensuing lateral displace- 
ment, that is vM*/Nw. Then the mean collision 
time between mutually approaching neighbours 
is simply the mean kink spacing divided by the 
relative collision velocity, (1/Nw*)/(2VM*/Nw). 
Since the inverse of this quantity gives the col- 
lision rate per kink pair, and the density of  such 
kink pairs is �89 the pair annihilation rate 
per bond becomes v~*Nw*~/Nw 2. For a steady 
state, this annihilation rate must balance the 
nucleation rate, vz~* = v~*Nw*2/Nw 2, thus 
giving an equilibrium kink concentration 

{vN*l~ 
Uw* = Uw \-~M*] " (13) 

Inserting Equation 13 into Equations 11 and 12, 
we obtain 

Nw (v~r.VM,)~ " (14) 

A full treatment of the problem would, 
therefore, require an analysis of both the 
nucleation and the motion facets of kink 
mechanics. Generally, it would be expected that 
v~* < vM*, but since both processes may be 
regarded as involving the rupture of a single 
bond (Fig. 1) we assume to a first approximation 
that vz~* = vz~* = v* say, thus reducing Equation 
14 to 

Nw v* (15) 
V c ~ ~ "~ p * a x  

with Nw = 1/a~, N• = 1/a~a~. This approxima- 
tion effectively ignores the attractive elastic 
interaction between the members of  a newly 
created kink pair; however, the attendant 
overestimate in v~* here should not be large for 
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the more brittle, covalently-bonded solids in 
which structural distortion about the kink 
sites is relatively localized [17]. 

It remains only to relate the frequency factor 
in Equation 15 to the activation energies for the 
kink processes. If  we assume the kink population 
to be determined by Maxwell-Boltzmann statis- 
tics we have 

U+*(G)] 
/ j* = ? x p  

kT J 

exp [ -  U__*(G)]\ - ~ j j ,  (16) 

where Vo ~-, kT/h (k = Boltzmann's constant, 
h = Planck's constant, T = absolute tempera- 
ture) is a lattice vibration frequency and the 
U*(G) terms are those plotted in Fig. 3. It will be 
noted that provision for both forward (bond 
breaking) and backward (bond remaking) 
fluctuations is included here. Combining Equa- 
tions 16 and 15 gives the kinetic crack velocity, 

Ve = vo(G)= voa~ {exp [ -  U+*(G)]kT_ ] 

- exp [ 
U_*(G)] 

k T  j }  (17) 

The function re(G) is plotted in Fig. 5 (full line), 
for a typical value U+*(2y) = U_*(2y) = 
2~,t~/~vNA = 25 k T  at Griffith equilibrium 
(Equation 9). Also plotted in Fig. 5 is the 
corresponding function with just the linear, 
forward activation term in Equation 10 included 
(dashed line), i.e. 

re(G) = voa~ exp ~ T ]  exp \ 2 N A k T ]  

( 0 < G - 2 y ~ 2 y t , ) -  (18) 

Notwithstanding the essential non-linearity of 
the intrinsic U*(G) functions in Fig. 3, Equation 
18 stands as a useful working basis for describing 
kinetic fracture processes over a reasonable 
portion of the forward trapping range. 

The above analysis is clearly open to con- 
siderable refinement. We have derived the key 
energy function in Equation 8 on the basis of an 
approximate solution to an oversimplified 
lattice representation, and have conveniently 
overlooked considerations of entropy terms and 
spurious sources or sinks (e.g. free surfaces 
intersecting extremities of the crack front) in the 
kink mechanics. The formulation nevertheless 
embodies certain desirable features: 

-~0 

-20 c 

lineGr // f opprox. Z / j  
/~ generGIfunction 

- 3 0  i 
27 2~' + ~'tz 2~' + 2Ytz 

Mechanical-energy-release rate, G 

Figure 5 Crack velocity as a function of mechanical- 
energy-release rate over forward trapping range. Full line 
is exact representation of Equation 17, evaluated accor- 
ding to the activation energies U+* and U-* shown in Fig. 
3. Note cut-off values ve = 0 at G = 27,, vc = voax at 
G = 2(y + "/e). Dashed line is approximate representation 
of Equation 17, using just the forward, linear activation 
energy U+*( < U-*) from Equation 10. Plots for U*(2y) = 
25 kT. 

(i) Equation 17 predicts a zero in the crack 
velocity ("fatigue limit") at true Griffith 
equilibrium, corresponding to equal forward and 
backward fluctuations of the kink energy barriers 
(u+*= u_*). 

(ii) Equation 17 predicts an upper limit in 
crack velocity, Ve ~ voa~ ~ (5 • l0 Is Hz) • 
(2 • 10 l~ m) = 10 a m sec -1 ~ dynamic veloci- 
ties, corresponding to spontaneous forward 
crack growth (U+* = O, U_* >> kT) .  

(iii) There is provision, through the material 
parameters y and yt, for incorporating the effects 
of extrinsic processes. 

4. Chemically.enhanced kinetic crack 
growth 

The presence of a chemical environment within a 
stressed crack system can lead to a very signifi- 
cant enhancement of kinetic crack growth. Such 
all effect must be given close attention in any 
practical consideration of material strength, for 
there are many chemical species in the everyday 
surrounds which inevitably have access to the 
vital crack-tip region via the open crack mouth. 
In this section we extend our previous treatment 
to cover the somewhat idealistic case of a single 
gaseous species diffusing along the crack inter- 
face and subsequently undergoing bond-rupture 
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interactions at the crack tip. However, in 
adopting this particular situation as a case study 
it is well to appreciate that a multiplicity of 
possible alternative processes may, in principle, 
be incorporated into the general formulati,on in 
similar fashion [4]. 

4.1. C h e m i c a l  m o d i f i c a t i o n  of  su r f ace  
ene rgy  t e rm  

Let us suppose that the chemical rupture process 
can be described in terms of a generalised inter- 
action between crack-tip bonds B and environ- 
mental molecules of species A according to 

-qA + B ~ B*,  (19) 

where the asterisk denotes passage over the 
activation barrier into the ruptured state. This 
interaction facilitates lateral crack advance 
through one atomic spacing, with the ~ molecules 
of the depleted species A left associated with the 
broken bond on the new surfaces thus created; 
the reverse interaction conversely facilitates 
crack retreat, with ,the A molecules corres- 
pondingly dissociated from the surfaces. Re- 
calling that forward extension of a crack front 
of unit width involves the rupture of 8N = 
NASc bonds, and noting that B* accordingly 
increases at the expense of B and A, we may 
write the energy rate for the system crack + 
environment as 

dU 
- G + (FB* -- FB -- rHxA)NA ' (20) 

dc 

where the /, terms are appropriate chemical 
potentials. If  we now identify the quantity 
/xB* - FB, representing the difference between 
"after" and "before" states of the crack-tip 
bond, with the surface energy function 21-"/NA for 
the bond, Equation 20 conveniently reduces to 

dU 
- G + 2F'  - r / / X A N A ,  (21) 

de 

in analogy with our original energy-balance 
Equation 2. We may then proceed through 
Equations 2 to 18 exactly as before, but with 
parameters 7' and yt '  relating to the new 
equilibrium at the crack-environment interface; 
in the "linear, forward approximation" of 
Equation 18, we obtain a crack velocity function 
modified only by an exponential term in the 

27tz' / 
v c(G) = voa. exp rc~AkT] 

(G_-- 2y'~ (~//ZA] 
exp \ 2NAkT ] exp \2 1 ' 

( 0 < G -  2 y ' ~ 2 y t z ' ) .  (22) 

For an ideal gas at a given temperature the 
chemical potential assumes the standard form 

FA = FAS(T) + kTIn ( P-~AS) , (23) 

where PA is the gas pressure at the crack tip and 
the superscript s denotes some reference state. 
We may note that/*A relates only to the state of 
the environment, which in this case is assumed 
independent of the stress intensity at the crack 
tip, hence of G. This independence of G may not 
always obtain, however; for instance, stress- 
enhanced ion-exchange processes are known to 
have a significant influence on the nature of 
aqueous environments at crack tips in silicate 
glasses [18, 19]. Within the present assumption 
we may insert Equation 23 into 22, collecting 
various uncertain energy constants into a single 
term, U0*, to obtain 

re(G) = V(T) ~--As exp - kT ] 

exp 2--NAkT ' ( 0 < G - 2 7  ' ~ 2 7 t ~ '  ) ,  (24) 

with V(T) a slowly varying factor. The term 
1/2NA = axa~/2 in the exponential factor for the 
mechanical-energy-release rate G may be regar- 
ded as having the status of an "activation area" 
for the kinetic crack motion. 

Before continuing the analysis it might be 
timely to compare the present theoretical model 
with an earlier one proposed by Charles and 
Hillig [20] and developed by Wiederhorn [21]. 
This earlier model, originally conceived with 
glass/water systems specifically in mind but now 
widely applied in the interpretation of slow 
crack growth in a wide range of brittle systems in 
general, derives from the following starting 
assumptions: the basic chemical process is that 
of a normal corrosion reaction at standard 
temperature and pressure, but enhanced by the 
special conditions existing within the crack 

chemical potential of the environmental species,* ~ system; the activation barrier for this process is 

*The intrinsic, zero-interaction crack velocity Equation 18 appearing as the limiting case n -+ 0. 
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lowered by an amount in direct proportion to the 
local stress intensity at the crack tip; the steady- 
state crack-tip profile is adequately approximated 
by portion of a smooth ellipse, the curvature of 
which tends to increase (by virtue of preferential 
chemical attack) toward atomic dimensions as 
the applied loading approaches the level for 
dynamic propagation. However, there are 
certain limiting features inherent in the "stress 
corrosion" model: 

(i) The assumption that the crack-tip rupture 
process is strictly a stress-enhanced dissolution 
reaction seems unnecessarily restrictive. It would 
appear to exclude the possibility of slow growth 
effects in environments which are non-corrosive 
at the zero stress level [22]. The present formu- 
lation, on the other hand, overcomes this objec- 
tion by allowing for the dominance of a reversed 
interaction (bond remaking) at stress levels 
below that corresponding to true Griffith 
equilibrium. 

(ii) The notion of a smoothly rounded elliptical 
hole is in direct conflict with that of the ideally 
sharp cleavage crack. Such a continuum view- 
point has no inbuilt provision for a lattice- 
trapping characteristic, which means that the 
necessary energy barrier for activated crack 
growth has to be introduced into the description 
in a somewhat artificial manner.* The consequent 
linearity between logarithmic crack velocity and 
crack-tip stress intensity predicted by this model 
thus has no sound physical basis, nor is it 
always borne out by experimental data (although 
the variation of crack velocity with applied load 
is generally so great that it is difficult to draw 
any definite conclusion concerning the exact 
functional form from experimental data alone). 
Again, to explain a fatigue limit it is necessary to 
postulate corrosive blunting of the crack tip at 
low loads; in crystalline materials with marked 
surface energy anistropy, such as mica [6], it is 
not easy to envisage anything but an atomically 
sharp tip. Such difficulties do not arise in the 
discrete, lattice trapping models. 

(iii) With its semi-empirical foundation, in 
which adjustable parameters can be determined 
only by curve fits to the data, the stress corrosion 
model is incapable of predicting a priori  the 
magnitude of the crack-velocity function for a 
given system. By contrast, the corresponding 
parameters in the present theory may, in prin- 
ciple at least, be predetermined from purely 

structural considerations at the atomic level 
(although in reality, approximations in the 
treatment impose certain numerical uncertain- 
ties, as we shall indicate later). 

4.2. Role of gas transport in fracture kinetics 
As mentioned briefly in the Introduction, a 
complete description of kinetic crack growth 
requires a consideration of any subsidiary 
rate-dependent steps that may precede the key 
bond-rupture event. In the case of an ideal gas 
environment, we need to take into account the 
kinetics of molecular diffusion along the narrow 
crack interface between mouth and tip. This 
situation has been treated in detail elsewhere [4, 
23], and we discuss only the essential results here. 

Suppose once more that the operation of 
crack-front kinks produces a crack extension 
through 3c. Then if the kinks are activated 
according to Equation 19, the arrival of 8M 
interacting molecules of species A at the tip of a 
crack of width unity will give rise to the rupture 
of 8N = SMfi? bonds. The basic crack velocity 
Equation 11 becomes 

1 ( a M )  
ve ~NA -d7 (25) 

with d M / d t  the steady-state molecular flow rate 
per unit width of crack front. From the kinetic 
theory of gases we obtain [23] 

dM tcay(PA ~ -- PA) 
dt  - (2rrmkT) ~ ' (26) 

where the lattice spacing ay along the y-axis 
represents the "reaction cross-section" per unit 
width of front presented to the impinging gas 
molecules by the crack-tip bonds, the pressure 
differential (pA ~ -- PA) between crack mouth 
(source) and tip (sink) represents the driving 
force for the molecular flow, m is the molecular 
mass of the gaseous species, and ~: represents an 
attenuation factor associated with the increasing 
incidence of retarding, diffuse molecule/wall 
collisions as the gas approaches the crack tip. 
The attenuation factor is a slowly-varying 
function of crack geometry, hence of the crack- 
extension force G, decreasing from unity 
(retardation-free value) as the crack becomes 
longer and narrower. However, we are not 
primarily concerned with the transport step here, 
and the function K(G) is in any case difficult to 
calculate accurately, so we shall simply regard K 

*For example, by series expansion of the activation free energy in terms of the "crack-tip stress" retaining only linear 
terms. 
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as a constant to be determined empirically over 
any limited range of G. Combining Equations 26 
and 25 then gives 

Ka u(P~ - PA) 
ve = ~TNA(27rmkT) ~ (27) 

We may note the relative insensitivity of this 
result to applied load and temperature. 

We now have two basic crack velocity func- 
tions, Equations 24 and 27, which may be 
connected via the unknown crack-tip gas 
pressure, PA. To this end Equation 24 is re- 
written in the form 

(PA ~ U2 
v e = Vr \~--~s ' (28) 

where, at PA --~ PA ~ ("instantaneous transport"), 

Vr = V(T) k-~AS) exp ( - -  --~]U~ 

exp , (29) 

defines a reaction-limited crack velocity. Simil- 
arly, Equation 27 is rewritten as 

where, atpA < pA ~ ("instantaneous interaction"), 

Ka~p~ 
v t -  ~lNA(2~rmkT) ~ (31) 

defines a transport-limited crack velocity. Elimin- 
ating PA from Equations 28 and 30 gives us 
finally an implicit relation in the crack velocity, 

- + = 1 ( 3 2 )  
vt \Vrl  

for the overall two-step, transport-reaction 
process. The crack growth will then be reaction- 
or transport-controlled over different ranges of 
G: at low G values, Vr < vt, ve --+ Vr, and 
conversely at high G values, Vr >> vt, Ve ~ vt. 
This justifies to some extent the approximations 
embodied in Equations 29 and 31, namely the 
forward, linear approximation corresponding to 
0 < G - 2y' ,~ 2),t~' in the reaction-controlled 
region, and the approximation that ~c be in- 
dependent of G in the transport-controlled 
region. 

4.3. Compar ison of theory with experimental  
crack velocity data 

In seeking to obtain experimental verification of 
the above analysis, care needs to be exercised in 
the choice of a model crack system. Firstly, of 
course, it is necessary that the material under 
consideration be capable of sustaining an 
atomically sharp crack, preferably (in keeping 
with the lattice models) on a well-defined 
crystallographic cleavage plane. Then, it is also 
necessary that the appropriate gaseous species 
in the environment diffuse toward, and interact 
with, the active crack-tip bonds in essentially the 
manner specified in Sections 4.2 and 4.1 res- 
pectively. In particular, one has to be careful 
here not to adopt a system complicated by such 
effects as crack-tip plasticity, crack-tip/micro- 
structure interactions (including interactions 
involving stress-enhanced migration of active 
point defects within the structure to the crack 
tip [24]), etc. Unfortunately, these restrictions 
are stringent, to the extent that very few of the 
crack velocity data accumulated in the literature 
are suitably pertinent to the present situation. 
We shall accordingly limit ourselves to a brief 
consideration of some published observations on 
the behaviour of the crack velocity function 
ve(pA ~ G) for (10i2)  fracture of sapphire in the 
presence of water vapour [25]. 

Fig. 6 makes the required comparison between 
theory and experiment for the Al~O3(s)-H20(g) 
system. The experimental data represent a series 
of runs, at seven partial pressures of water 
vapour.* The corresponding theoretical curves 
are generated from the two-step Relation 32, in 
conjunction with Equations 29 and 31. Here we 
t a k e T =  3 0 0 K a n d p A  s = 1.0 x 1 0 5 N m  -~as 
our standard state for the water vapour environ- 
ment. Several of the other necessary parameters 
in Equations 29 and 31 are obtained from struc- 
tural considerations, as follows. In the sapphire 
lattice [26] the oxygen atoms are arranged 
approximately in hexagonal close packing 
(O-O distance 0.27 nm). Between the close- 
packed layers exist octahedral interstices, two- 
thirds of which are occupied (in ordered 
manner) by the aluminium atoms (AI-O 
distance 0.19 nm). The simplest chemo-rupture 
interaction between the water molecules and the 
sapphire bond linkage across the crack plane is 

*The test environment in these experiments actually consisted of humidified nitrogen gas. We may recall (Section 4.2) 
that the flow rate of gas to the crack tip is limited by molecule/wall collisions, in which case each molecular species 
must diffuse independently of the other. Thus, presuming the nitrogen to be inert, the relevant pressure is the partial 
pressure of the reactive water vapour. 
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Figure 6 Comparison between theory (full lines) and 
experiment (data points) for (1012) fracture of sapphire 
in water vapour (pressures indicated) at room tempera- 
ture. Theoretical curves generated from two-step Equation 
32. Experimental data from [25 ] (with mechanical-energy- 
release rates G converted from plotted "stress-intensity 
factors" Kaccording to G = K2/E, using E = 3.5 x 1011 
N m -2 as Young's modulus for sapphire). At upper limit 
to trapping range crack accelerates toward dynamic state 
(dashed line). 

(-A1-O-A1-) + (H-O-H)  
( -A1-OH.  HO-A1-) ; (33) 

that is, the strongly linking oxygens are replaced 
by weakly coupled hydroxyl pairs. This gives 
~7 = 1 in Equation 19. Also, we have m = 3.0 
x 10 -26 kg (H20), au = 0.38 nm (A1-O-A1 

bond length). To determine the bond density we 
note that, because of the incomplete aluminium 
occupancy, only two-thirds of the linking 
oxygens need be replaced by hydroxyl pairs in 
order for chemo-rupture to proceed; we obtain 
NA = 1.15 x 1019 bonds m -z [A12Oz (10i2)  
plane]. The remaining unknowns may be 
reduced to just one dimensionless constant in 
each of Equations 29 and 31, to be matched 
empirically to the experimental data: in Equation 
29 we collect all unspecified temperature- 
dependent terms into a single parameter 
V'(T) = V(T) exp ( -  Uo/kT), and set V'(T)= 
1.0 x 10 -16 m see-l; similarly, in Equation 31 
we set K = 0.06. 

It is apparent from Fig. 6 that the theory is 
capable of accounting for the qualitative features 
of the applied load and pressure dependence of 
the crack velocity function for the kinetic 
fracture of brittle solids in a dilute gas environ- 
ment. In particular, the distinctive transition in 
the v e(G) curve at given pressure and temperature 
is entirely consistent with the proposed transport- 
reaction process. However, for lack of an exact 
structural kink model for the sapphire/water 
system, we have been forced to resort to a semi- 
empirical approach in the present calculations, 
as a result of which little or no physical sig- 
nificance can be attached to absolute values of the 
generated functions. Extension of the critical 
analysis, for instance to the questions of the 
temperature dependence of the crack velocity and 
the existence of a static fatigue limit, would 
require, in addition to a more detailed kink 
model, more comprehensive experimental data 
than are at present available. 

5. C o n c l u d i n g  r e m a r k s  
We have outlined a theory of kinetic crack 
growth for brittle solids, based on a model of an 
atomically kinked crack front. Unlike earlier 
treatments, the fundamental non-linearity of the 
bond-rupture process is accommodated in the 
formulation. In its immediate form, the model 
appears capable of predicting the crack velocity 
dependence on such key variables as applied 
loading, chemical concentration of reactive 
environmental species, temperature, etc. How- 
ever, because of the present necessity to resort to 
approximate solutions for the atomic motions in 
oversimplistic lattice-crack structures, this capa- 
bility is yet to be fully substantiated. Moreover, 
absolute predictions of the crack velocities lie 
beyond the scope of the model at this stage. 

There is, accordingly, an apparent need for 
more detailed studies of model crack systems, 
from both theoretical and experimental stand- 
points. Here materials such as the diamond- 
structure crystals, with their highly brittle 
fracture characteristics, their relatively simple 
covalent bonding, and their current availability 
in near-perfect single-crystal form, present 
themselves as attractive candidates. Experi- 
mentally, the need is for more systematic 
accumulation of crack velocity data under 
controlled conditions of testing. Theoretically, 
more refined structural models are required to 
evaluate the essential parameters in the total 
energy functions for the kink displacements. 
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While  i t  may  be possible  to gain some physical  
insight into these parameters  f rom simple 
bond-energy arguments  [4, 27], the general  
complexi ty  of  the p rob lem would  seem to 
demand  the use of  the high-speed computer .  
Sinclair ' s  recent computa t ions  of  the energetics 
o f  intr insic k ink  mot ion  in sil icon (1 1 1) cleavage 
[17] are especially relevant  in this context .  
Pre l iminary  a t tempts  to model  envi ronmenta l  
effects in a similar  way, as wi th  an interest ing 
s imula t ion  o f  hydrogen  in terac t ion  at  c rack  tips 
in a - i ron  [28], serve to hint  at  some of  the 
difficulties which beset  inves t igat ions  of  the 
less simple kinetic fracture phenomena .  

However ,  inadequacies  in the details  of  the 
model l ing  should no t  be al lowed to c loud the 
inherent  general i ty of  the present  approach .  The 
incorpora t ion  of  extraneous  effects into the 
descr ipt ion is faci l i tated via the re tent ion  of  the 
Griffi th energy-balance concept  as an under-  
lying theoret ical  basis for  the model .  Thus  the 
in terac t ion  Equa t ion  19 may  be extended 
beyond  the chemical  in te rpre ta t ion  of  Section 
4. I ;  for  instance, "species A "  may  equal ly well 
be t aken  to represent  such rupture-assis t ing 
agents as vacancies or  interst i t ials  within the 
solid structure,  r ad ia t ion  part icles or  photons ,  
etc. The  p rob lem reduces to one of  rewri t ing 
the to ta l  energy funct ion of  the system to suit  the 
appropr i a t e  new system variables,  and  thence 
proceeding  with the analysis as before.  

In  principle,  there  is no reason why the basic 
ideas out l ined here should no t  u l t imate ly  be 
extended to more  pract ical  systems, no tab ly  
metal l ic  and  ceramic systems in which the 
compl ica t ions  of  micros t ruc ture  and glassy 
phases are the rule ra ther  than  the exception.  
Here  it becomes a quest ion of  first identifying 
the var ious  mechanisms which cont r ibute  to  the 
overal l  c rack  growth  process,  and  then deter-  
mining the condi t ions  under  which each such 
mechanism might  assume a ra te-cont ro l l ing  role. 
This opens up  a wide field for  fur ther  study. 
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